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This paper shows that the Poincare´ section technique is a powerful tool for representing the solutions of
differential delay equations~DDEs!. The tool enables us to conveniently identify the periodicity of solutions of
a DDE. With this tool we illustrated the fine structure, including the Farey tree structure, of the bifurcation
diagram with a DDE related to optical bistability.@S1063-651X~96!03411-3#

PACS number~s!: 05.40.1j

In the study of the systems described by differential delay
equations~DDEs!, researchers get much benefit from the ap-
plication of numerical methods, such as numerical simula-
tion, power spectrum analysis, and Lyapunov analysis@1,2#.
These methods enable them to find that a class of DDEs
related to optical bistability may display bifurcation~multi-
furcation! phenomena @2,3#, frequency-locked anomaly
@4–6#, Hopf bifurcation, quasiperiodic motion@7#, and cha-
otic behavior@1–12#. In order to trace the evolution course
of the DDE studied, researchers usually draw the evolution
curve of a variable, say,x, with time t. However, it is diffi-
cult to distinguish, say, a long periodic orbit from a quasip-
eriodic or chaotic trajectory if one observes thex(t)2t dia-
gram only. It is the purpose of the present paper to apply the
well-known Poincare´ section technique to the study of DDEs
so as to provide an efficient way of representing its solutions.
This is to be done by scattering thex(t)2t curve properly.
The DDE investigated by us is of the form

t
dx~ t !

dt
52x~ t !1 f „m,x~ t21!…,

with

f ~m,x!512mx2, ~1!

wherexPR andt,m are the system parameters (t is fixed to
0.81 throughout the paper!. To getx(t) we integrate~1! nu-
merically by using a fourth-order Adam interpolation. Equa-
tion ~1! is considered to have some general characteristics of
a kind of DDE related to optical bistability@11,12#.

Figures 1~a!–1~c! show three solutions of~1! by drawing
the x(t)-t diagram: a periodic solution with periodT53.04
@Fig. 1~a!, m53.0#, a periodic solution with periodT519.2
@Fig. 1~b!, m54.385#, and a chaotic solution@Fig. 1~c!,
m54.45#. By observing this kind of figure only, nobody can
distinguish a periodic solution from a quasiperiodic or cha-
otic solution with confidence. In order to apply the Poincare´
section technique, one can write a DDE as a functional dif-
ferential equation

t
dx~ t !

dt
5Im@xt ,m#, xPC, ~2!

where $C5xtuxtPC[21,0] ,xt(u)5xt(t1u),21<u<0,
0<t<`%, C[21,0] is a linear space whose elements are con-
tinuous functions in (21,0), and Im:C°R is a functional.
In this form, the dynamics can be well viewed as a
continuous-time flow from an initial statext0 in C. The flow

can be written asxt(u)5Gu(t,t0)xt0, whereGu(t,t0):C°R

is the evolution operator that mapsxt0 to xt(u) andGu(t,t) is
defined as unit operator. This defines a function-to-function
map onC,

xi11~u!5Gu~ t i11 ,t i !~xi !, ~3!

wherexi[xti and t i is the measuring time. In the limit case

of t50, ~3! can be written down explicitly. In the selection
of f (m,x)512mx2, it is just the one-dimensional logistic
map

xi11~u!512mxi
2~u!. ~4!

In general, one has to get~3! numerically. The way to con-
vert the flow to a map is somehow arbitrary. One can obtain
t i ’s ~andxi ’s correspondingly! by simply measuringt with a
constant intervalb, i.e., t i112t i5b. This way corresponds
to the stroboscopic sampling techniques used by experimen-
talists @the sample here is a segment ofx(t) betweent i21
and t i instead of a finite number of points#. Li and Hao@11#
also suggested using it to represent the solutions of DDEs.
Figures 1~d!–1~f! show the same solutions given in Figs.
1~a!–1~c!, respectively, by using this method in the case of
b51. One can find that the periodic solutions appear as qua-
siperiodic solutions. The reason is thatT/b is generally not a
rational number. Thus this way of converting the flow to a
map is not capable of meeting the purpose to identify the
periodic quality of the solutions of DDEs.

In fact, the interval oft i ’s does not need to be a constant.
One can obtaint i ’s in the following way. Choose an appro-
priate constantxcPR ~we choosexc50 for the system stud-
ied in the present paper!; integrate ~1! numerically; and
switch on a simulation procedure to gett i as well asxi in the
condition xi(0)5xc when the integrated curve shows*Author to whom correspondence should be addressed.
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x(t).xc andx(t1h),xc , whereh is the length of the in-
tegrating step and has been set to 0.001 in the paper. In this
way of scatteringt, a periodic solution of~1! with period
T, x(t)5x(t1T), will correspond to a periodic solution of
~3! with periodN, xi(u)5xi1N(u), uniquely. Figures 1~g!–
1~i! show the result by using of this representation. One can
find that the periodic solution with periodT53.04 appears as
one curve@Fig. 1~g!# and the periodic solution with period
T519.2 appears as six curves@Fig. 1~h!#. We call them the
period-1 solution and the period-6 solution, respectively.
Figure 1~i! describes the chaotic solution shown in Fig. 1~c!,
and the curve in the figure looks irregular. This method of
converting a flow to a map is similar to that in the case of
finite-dimensional autonomous systems, but the map ob-
tained here is a curve-to-curve map instead of a point-to-
point map. Thus we regard the maps obtained in this way as
the Poincare´ map of DDEs and denote the periodic solution
of ~1! with the period of the Poincare´ map. To illustrate the
bifurcation behaviors of the system in a familiar way, we can
simply represent the curvexi by n representative points
xi(u j ) ( j51,2, . . . ,n). Then the curve-to-curve mapping ap-
pears as a point-to-point mapping inRn. In practice, one
needs only a two-dimensional or a one-dimensional point-to-
point representation of the Poincare´ map for the usual inves-
tigation. For example, one can exhibit the coexistence attrac-
tors with a two-dimensional representation in the plane
xi(d1)-xi(d2) or investigate the bifurcation behavior of the
parameterm by depictingxi(d1), whered1 andd2 are con-
stants and21,di,0. Figure 2 shows the bifurcation dia-
grams of several coexisting attractors in the plane
xi(20.08)2m. The object originating from a period-N solu-
tion is coded bynA. The main branch 1A illustrates an infi-
nite period-doubling process with increasing the parameter
m: a period-1 solution, bifurcates~at m53.4745) to a
period-2 solution which then bifurcates~at m54.1065) to a
period-4 solution, which then bifurcates ~at
m54.234 45) to a period-8 solution. The following

bifurcation up to 256 periods takes place at
m54.265 875,4.272 915 5,4.274 428 3,4.274 752 8, and
4.274 822 5, respectively, with an accumulation point
m54.274 841 496, beyond which chaos appears. According
to the above data, the convergence rate is calculated to be
d154.66. Increasingm continuously, the chaotic state accu-
mulates to a period-1 solution again through a reversal of
period-doubling cascades. We also calculate the convergence
rate of the reversal sequence by using the data of the bifur-
cation points up to 128 periods and getd254.63. In fact,
calculations show that the convergence rates of the period-
doubling sequence in some periodicity windows of 1A and in
other branches~2A, 3A, and 6A! all seem to agree to the
scaling factor. There are abundant the periodicity windows in
the chaotic range of 1A. Scanning the rangem
P(4.27,4.92) with the scaledm5531025, periodicity win-
dows found are 20, 12, 14, 10, 14, 16, 6, 18, 14, 10, 8, 10, 9,

FIG. 1. Geometrical represen-
tation of the solutions of~1!.

FIG. 2. Bifurcation diagrams of several coexistence attractors of
~1!. The attractor beginning with a period-N solution is coded by
nA.
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9, 11,10, 8, 10, 16, 18, 10, 14, 12, and 20; here we use the
period of the beginning periodic solution in a window to
denote the corresponding periodicity window and only peri-
odicity windows less than 20 are listed. Dividing the se-
quence into two parts at the two 9’s, one can see that most
numbers on the left-hand side can be found in the symmetri-
cal position on the right-hand side. In fact, it seems that the
right-half of 1A is a mirror of the left-hand side of 1A. How-
ever, the right-hand side of 1A disappears suddenly with
decreasingt, whereas the left half remains all the way and
the periodic wave forms in it appear to be the continuous-
time counterparts of the discrete cycles predicted by the one-
dimensional model, the logistic map. Figure 3 is an enlarge-
ment of the area indicated by a broken-line square in Fig. 2.
From this figure one can find that a bifurcation occurs at
m55.401. The process of the bifurcation in a two-
dimensional Poincare´ section and the Lyapunov exponents
calculations indicates that the bifurcation is a Hopf bifurca-
tion. After the Hopf bifurcation, Fig. 3 indicates that there
exists a quasiperiodic solution region embedded with many
periodic solutions. In fact, scanning the region with a finer
scale of the parameter step, one can find numerous periodic
solutions. Scanning the rangemP(5.401,5.435) with param-
eter steps ofdm5131026, we get the following sequence
of stable period solutions~only periods less than 80 are
listed!: 71, 33, 61, 68, 79, 51, 74, 23, 64, 41, 59, 77, 18, 67,
49, 31, 75, 44, 57, 70, 13, 73, 60, 47, 34, 55, 76, 21, 71, 50,
29, 66, 37, 53, 8, 75, 67, 59, 51, 43, 78, 27, 46, 68, 19, 49,
30, 42, 11, 36, 61, 61, 25, 64, and 14. It is found that the
sequence is just a part of the well-known ‘‘Farey sequence.’’
In the case of the circle map, a periodic orbit is denoted by a
rational fractionp/q, where q indicates that there areq
points on the circle, i.e.,q is the period of the orbit, andp

indicates that each of theq points is visited inp full turns.
When the frequency locking occurs, this periodic orbit can
be observed within a parameter regime. Between two
frequency-locked regimes, described by rational fractions
p/q andp8/q8, respectively, the most easily observable, i.e.,
the widest in the parameter space, period would be given by
the Farey compositionp/q%p8/q85(p1p8)/(q1q8). In
the example here, we omit the calculation of the full turn
number p for simplicity and then the Farey composition
turns intoq%q85(q1q8). Applying this composition rule
to q55 andq853, one gets 8, which is the widest periodic
solution in the parameter space~see Fig. 3!. Reapplying the
Farey construction to all adjacent pairs, one arrives at a
Farey tree, shown in Fig. 4. One can find the numbers in the
tree except those with parentheses, which are found in the
above stable periodic solution sequence. In fact, we exam-
ined all the periodic solutions in the above sequence and
found that they obey the Farey composition rule, except for
the two adjacent period-61 solutions, which should be one
period-61 solution according to the Farey construction. The
existence of the stable Farey construction periodic solutions
indicates that frequency locking occurs here. The locked fre-
quencies are the two frequencies in tours and the mechanics
is similar to that of the circle maps.

In conclusion, the Poincare´ section technique is a power-
ful tool in the study of DDEs. This tool provides us with an
efficient method of representing the solutions of DDEs geo-
metrically. With this representation, one can easily identify
different periodic solutions, describe the quasiperiodic solu-
tions, demonstrate coexist solutions, and investigate the bi-
furcation behaviors. We have investigated~1! in detail and
shown the fine structure of the bifurcation diagram. We
found that besides the period-doubling bifurcation the Hopf
bifurcation of periodic solutions may also take place in the
systems described by~1!. After the Hopf bifurcation thresh-
old, there appears a quasiperiodic regime that is embedded
with the Farey sequence of stable periodic solutions. Taking
the other forms of f (m,x) in Eq. ~1!, say,
f (m,x)5pmsin(x2x0) as Ikeda and Matsumoto adopted@2#,
similar phenomena have been observed.
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