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Nonlinear differential delay equations using the Poincaresection technique
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This paper shows that the Poincasection technique is a powerful tool for representing the solutions of
differential delay equationd®DES). The tool enables us to conveniently identify the periodicity of solutions of
a DDE. With this tool we illustrated the fine structure, including the Farey tree structure, of the bifurcation
diagram with a DDE related to optical bistabilify51063-651X96)03411-3

PACS numbe(s): 05.40:+j

In the study of the systems described by differential delay dx(t)
equationgDDES), researchers get much benefit from the ap- Tgqr ~IMixe,ul, xeC, (2
plication of numerical methods, such as numerical simula-
tion, power spectrum analysis, ano_l Lyapunov analysigl.  \where {C=x{|xte C[_ 1,0, X:(0) =Xi(t+ 6), — 1< 6=<O0,
These methods enable them to find that a class of DDEg<{<col, C(_10 is a linear space whose elements are con-
related to optical bistability may display bifurcatiémulti-  tinyous functions in € 1,0), and Im:C—R is a functional.
furcation phenomena[2,3], frequency-locked anomaly |n this form, the dynamics can be well viewed as a
[4-6], Hopf bifurcation, quasiperiodic motiofY], and cha-  ¢ontinuous-time flow from an initial statg_in C. The flow
otic behavior{1-12). In order to trace the evolution course can be written ax,(6) =T ,(t,tg)x whertgl“ (t.to):C—R
of the DDE studied, researchers usually draw the evolution ) t AR50/ Mg AN )
curve of a variable, say, with time t. However, it is difi- 1S the evolution operator that magg to x(#) andI',(t,t) is
cult to distinguish, say, a long periodic orbit from a quasip-defined as unit operator. This defines a function-to-function
eriodic or chaotic trajectory if one observes thg)—t dia- map onC,
gram only. It is the purpose of the present paper to apply the
well-known Poincaresection technique to the study of DDEs Xi+1(0) =T g(ti+1,t) (X)), 3
S0 as to provide an efficient way of representing its solutions. h _ dt. is th ing i In the limit
This is to be done by scattering tlét) —t curve properly. wherex; =X, andt; Is the measuring ime. n the imit case

The DDE investigated by us is of the form of 7=0, (3) can be vyri_tte_n down explici;ly. In _the seleqtic_)n
of f(u,x)=1—ux?, it is just the one-dimensional logistic
dx(t) map
Tgr = X0+ f(x(t-1), ,

Xi+1(0)=1—=pux;“(0). (4)

with In general, one has to gé3) numerically. The way to con-
vert the flow to a map is somehow arbitrary. One can obtain
f(u,X)=1—pux?, (1) ti’s (andx;'s correspondinglyby simply measuring with a

constant intervab, i.e., t;, ;—t;=Db. This way corresponds
wherex e R and 7, u are the system parametersi§ fixed to  to the stroboscopic sampling techniques used by experimen-
0.81 throughout the paperTo getx(t) we integratg(1) nu-  talists[the sample here is a segmentxgt) betweent;— 1
merically by using a fourth-order Adam interpolation. Equa-andt; instead of a finite number of poiftd.i and Hao[11]
tion (1) is considered to have some general characteristics aflso suggested using it to represent the solutions of DDEs.
a kind of DDE related to optical bistability11,12. Figures 1d)-1(f) show the same solutions given in Figs.
Figures 1a)-1(c) show three solutions dfl) by drawing  1(a)—1(c), respectively, by using this method in the case of
the x(t)-t diagram: a periodic solution with periob=3.04 b=1. One can find that the periodic solutions appear as qua-
[Fig. 1(a), u=3.0], a periodic solution with period=19.2  siperiodic solutions. The reason is tidb is generally not a
[Fig. 4b), ©=4.385, and a chaotic solutiofFig. 1(c), rational number. Thus this way of converting the flow to a
u=4.45]. By observing this kind of figure only, nobody can map is not capable of meeting the purpose to identify the
distinguish a periodic solution from a quasiperiodic or cha-periodic quality of the solutions of DDEs.
otic solution with confidence. In order to apply the Poincare In fact, the interval ot;’s does not need to be a constant.
section technique, one can write a DDE as a functional difOne can obtain;’s in the following way. Choose an appro-
ferential equation priate constan; e R (we choosex,=0 for the system stud-
ied in the present paperintegrate (1) numerically; and
switch on a simulation procedure to detis well as; in the
*Author to whom correspondence should be addressed. condition x;(0)=x. when the integrated curve shows
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x(t)>x, andx(t+h)<x., whereh is the length of the in- bifurcation up to 256 periods takes place at
tegrating step and has been set to 0.001 in the paper. In this=4.265 875,4.272 915 5,4.274 428 3,4.274 752 8, and
way of scatteringt, a periodic solution of(1) with period 4.274 8225, respectively, with an accumulation point
T, x(t)=x(t+T), will correspond to a periodic solution of w=4.274 841 496, beyond which chaos appears. According
(3) with periodN, x;(8) =x;,n(8), uniquely. Figures @)—  to the above data, the convergence rate is calculated to be
1(i) show the result by using of this representation. One card,=4.66. Increasing. continuously, the chaotic state accu-
find that the periodic solution with periobi=3.04 appears as mulates to a period-1 solution again through a reversal of
one curve[Fig. 1(g)] and the periodic solution with period period-doubling cascades. We also calculate the convergence
T=19.2 appears as six curvgsig. 1(h)]. We call them the rate of the reversal sequence by using the data of the bifur-
period-1 solution and the period-6 solution, respectively.cation points up to 128 periods and g&=4.63. In fact,
Figure Xi) describes the chaotic solution shown in Fi¢c)l  calculations show that the convergence rates of the period-
and the curve in the figure looks irregular. This method ofdoubling sequence in some periodicity windows of 1A and in
converting a flow to a map is similar to that in the case ofother branche$2A, 3A, and 6A all seem to agree to the
finite-dimensional autonomous systems, but the map obscaling factor. There are abundant the periodicity windows in
tained here is a curve-to-curve map instead of a point-tothe chaotic range of 1A. Scanning the range

point map. Thus we regard the maps obtained in this way as (4.27,4.92) with the scaléu=5x10"°, periodicity win-

the Poincaramap of DDEs and denote the periodic solution dows found are 20, 12, 14, 10, 14, 16, 6, 18, 14, 10, 8, 10, 9,
of (1) with the period of the Poincammap. To illustrate the

bifurcation behaviors of the system in a familiar way, we can

simply represent the curvg by n representative points 0.15
xi(0;) (j=1,2,...,n). Then the curve-to-curve mapping ap-
pears as a point-to-point mapping RI'. In practice, one
needs only a two-dimensional or a one-dimensional point-to-
point representation of the Poincarap for the usual inves- g
tigation. For example, one can exhibit the coexistence attrac-5
tors with a two-dimensional representation in the plane t.-
x;(d1)-x;(d,) or investigate the bifurcation behavior of the 0.05 -
parametern by depictingx;(d,), whered; andd, are con- ;
stants and—1<d;<0. Figure 2 shows the bifurcation dia- 1 oo
grams of several coexisting attractors in the plane

0.10

X;(—0.08)— u. The object originating from a period-solu- 0001 —_— —_—

tion is coded bynA. The main branch 1A illustrates an infi- 3.0 3.5 4.0 45 5.0 5.5

nite period-doubling process with increasing the parameter [

u: a period-1 solution, bifurcatesat ©=3.4745) to a

period-2 solution which then bifurcatéat u=4.1065) to a FIG. 2. Bifurcation diagrams of several coexistence attractors of

period-4  solution, which  then  bifurcates (at  (1). The attractor beginning with a periddl-solution is coded by
u=4.23445) to a period-8 solution. The following nA.
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indicates that each of thg points is visited inp full turns.
When the frequency locking occurs, this periodic orbit can
be observed within a parameter regime. Between two
frequency-locked regimes, described by rational fractions
T T ¥ v p/q andp’/q’, respectively, the most easily observable, i.e.,
5.40 5.41 5.42 543 . . . .
the widest in the parameter space, period would be given by
the Farey compositiorp/gep’/q'=(p+p’)/(g+q’). In
the example here, we omit the calculation of the full turn
FIG. 3. Enlargement of the broken-line square indicated regiomumber p for simplicity and then the Farey composition

of 1A in Fig. 2. turns intoq@q’ =(q+q’). Applying this composition rule
H g=>5 andq’ =3, one gets 8, which is the widest periodic

9, 11,10, 8, 10, 16, 18, 10, 14, 12, and 20; here we use t @I tion in th ¢ tsee Fi R ving th
period of the beginning periodic solution in a window to solution in the parameter spacsee Fig. 3 Reapplying the

; C ; . Farey construction to all adjacent pairs, one arrives at a
denote the corresponding periodicity window and only peri- N - .
odicity windows less than 20 are listed. Dividing the Se_Farey tree, shown in Fig. 4. One can find the numbers in the

quence into two parts at the two 9's, one can see that modiee except those with parentheses, which are found in the

numbers on the left-hand side can be found in the symmetrf21 ove stable periodic solution sequence. In fact, we exam-

cal position on the right-hand side. In fact, it seems that th%neddallh t:letzhperlobdlc tsholulgons in the a_tt)_ove slequencetafmd
right-half of 1A is a mirror of the left-hand side of 1A. How- ound that tney obey the Farey composition rule, except for

ever, the right-hand side of 1A disappears suddenly Withthe.tWO adjacept period-6_1 solutions, which ShOUId. be one
decreasingr, whereas the left half remains all the way and period-61 solution according to the Farey construction. The

the periodic wave forms in it appear to be the Continuous_existence of the stable Farey construction periodic solutions

time counterparts of the discrete cycles predicted by the onér-m'c""t.eS that frequency Iocklng oceurs here. The locked fre_:-
quencies are the two frequencies in tours and the mechanics

dimensional model, the logistic map. Figure 3 is an enlargei-S similar to that of the circle maps.

ment of the area indicated by a broken-line square in Fig. 2. In conclusion, the Poincaection technique is a power-

From this figure one can find that a bifurcation occurs atful tool in the study of DDEs. This tool provides us with an

u=5.401. The process of the bifurcation in a two- .- . ;
dimensional Poincarsection and the Lyapunov exponents eff|C|_ent meth_od Of representlng_the solutions of DDES geo-
metrically. With this representation, one can easily identify

. L Lo ! tions, demonstrate coexist solutions, and investigate the bi-
exists a quas!perlodlc solution region embedded W ith ManY \rcation behaviors. We have investigated in detgail and
periodic solutions. In fact, scanning thg region with a f”.]er.pown the fine structure of the bifurcation diagram. We
2gﬁ§0?3thsecgirn&}?e:ﬁ; S;;enp, on(% Z%q gnfsggjvvirhouzrz(::_Od ound that besides the period-doubling bifurcation the Hopf
oter ste s ofs :1g>< 10-6 v%ie ef the,f(.allowin sep Lence bifurcation of periodic solutions may also take place in the
of stablg eriléd solution’ssonl 9 eriods less tg\an q80 are systems described kit). After the Hopf bifurcation thresh-
listed): 71 %3 61 68. 79. 51 );4p 23 64 41 59 77 18 67old, there appears a quasiperiodic regime that is embedded
49, 31, 75, 44, 57, 70, 13, 73, 60, 47, 34, 55, 76, 21, 71, 50"%'2“ thoeth'zar‘reyf Seduence ?f(zt"’)‘g'e ‘i’rf”o‘é'; SO'(‘it)'O”Ss';,ak'”g
29, 66, 37, 53, 8, 75, 67, 59, 51, 43, 78, 27, 46, 68, 19, 49 a L ' ' ' '
30, 42, 11, 36, 61, 61, 25, 64, and 14. It is found that thefi(r'ﬁi’l);)r_g e‘ﬁ}i‘ﬁf’éﬂﬁ;‘je'kbeed;asssg\%sd“mom adopied),
sequence is just a part of the well-known “Farey sequence.’S P '

In the case of the circle map, a periodic orbit is denoted by a We acknowledge fruitful discussions with Professor B. L.
rational fractionp/q, where q indicates that there arg Hao and Professor Y. Gu. This work is supported by Gansu

points on the circle, i.eq is the period of the orbit, and provincial Natural Science Foundation of China.
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